If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10x-45x^2=0
a = -45; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·(-45)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*-45}=\frac{0}{-90} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*-45}=\frac{20}{-90} =-2/9 $
| 4(3x+8)=18x+20-6x+12 | | -1/3x-1/4x+1/12x=3 | | (2m-1)(m+2)=m2+16 | | 3(-2y+10)=6 | | 6s+3=-15 | | 36x=18- | | 4(+x=18+2x | | x12=108 | | 3x÷4+21÷2=2x | | -3/4k=-21 | | 8-(3-x)=14-x | | 3(x+4)-10=29 | | 3x/(3x+7)-(3x+7)/3x=14 | | 2x-5=−x+19 | | 6-4x=7x-9x=12 | | 4(x+3)-9=31 | | (x+10)=3x-40 | | 5(a+2)-2(a+5)=49-a | | 5(a+5)-2(a+2)=49-a | | 25y*y=3 | | 5x+10-2x+10=49-4x | | 100-4y=3 | | 100y=3y-4 | | 13+2k=3k4(k-3 | | 2a−9=4(3a+1)−8 | | (x+22)=(5x-38) | | 25y=y-3 | | 10x+3x+0,5x=100 | | 3x+58-6*2x=5x-100+36 | | X^3-7x^2+8x-3=0 | | 3x-1/4=2x-3x | | x+2/3=X+4X |